Information-Geometric Indicators of Chaos in Gaussian Models on Statistical Manifolds of Negative Ricci Curvature
نویسنده
چکیده
A new information-geometric approach to chaotic dynamics on curved statistical manifolds based on Entropic Dynamics (ED) [1] is proposed. It is shown that the hyperbolicity of a non-maximally symmetric 6N-dimensional statistical manifold Ms underlying an ED Gaussian model describing an arbitrary system of 3N non-interacting degrees of freedom leads to linear information-geometric entropy growth and to exponential divergence of the Jacobi vector field intensity, quantum and classical features of chaos respectively.
منابع مشابه
Indicators of Chaos in Gaussian Models on Statistical Manifolds of Negative Ricci Curvature
Abstract. Entropic Dynamics (ED) [1] is a theoretical framework developed to investigate the possibility that laws of physics reflect laws of inference rather than laws of nature. In this work, it is shown that the hyperbolicity of a 6N-dimensional statistical manifold Ms underlying an ED Gaussian model leads to linear entropy growth and to exponential divergence of the Jacobi vector field inte...
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملJacobi Fields on Statistical Manifolds of Negative Curvature
Abstract. Two entropic dynamical models are considered. The geometric structure of the statistical manifolds underlying these models is studied. It is found that in both cases, the resulting metric manifolds are negatively curved. Moreover, the geodesics on each manifold are described by hyperbolic trajectories. A detailed analysis based on the Jacobi equation for geodesic spread is used to sho...
متن کاملWarped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملOn three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
متن کامل